Regional Roundtable on Infrastructure Governance Regulation, Governance and Transparency

Technology to Improve Infrastructure Governance - A Perspective of Indian Power System

Mrs. Seema Gupta, Director(Operations) Power Grid Corporation of India Ltd.

May 23, Seoul, Republic of Korea

Indian Power System - Outlook

3500 **Rising Per Capita** Installed Capacity ~ 356 GW 3134 **Consumption** 3000 (in kWh per annum) 2500 Annual Consumption - 1250 BU 2199 2000 1500 1494 Peak Demand Met: 175 GW 1243 1000 813 500 **One Nation - One Grid - One Frequency** 0 2012 2014 2017 2027 2032 2022 2nd Largest Synchronous Grid in World

Voltage Level	Circuit Kilometers (CKM)	Transformation Capacity(MVA)
HVDC	15556	22500
765kV	41809	211500
400kV	180746	324822
220kV	175296	352481

Seamless Cross-Country power flow

Large Scale Renewables Capacity Addition – 175 GW by 2022

International Cooperation-Towards integrated power system

Towards Integrated Global Power System

Inter- connections	Existing	Under Construction
India – Bhutan	1350	2900
India – Bangladesh	1200	1340
India – Nepal	550	400
India – Myanmar	3	-
Sri Lanka	1000 (under discussion)	

Hon'ble Prime Minister, India Vision 'One World-One Sun-One Grid' for flow of solar energy across borders

POWERGRID – Growth Story

Planwise Growth - CKM (cum.)

Mar.'19) Planwise Growth - MVA (cum.)

GFA (US\$ mn)

5 Year Plans: VIII (FY 1992-97); IX(FY 1997-02); X (FY 2002-07); XI (FY 2007-12); XII (FY 2012-17)

Challenges in Building Power Transmission Infrastructure

Generation projects issues:

• Uncertainties in time line, Power Purchase Agreements and Long Term Access

Renewable Energy Integration with Grid:

- RE Generation gestation ~ 1 year while it is 2-3 years for transmission system
- Issues in grid stability due to inherent intermittency, variability and uncertainty.

Implementing multiple large Projects within Time and Cost

- Approval of Projects
- Transparency in Procurement
- Monitoring of Progress
- Quality Control & Inspection
- * Land Acquisition & Right-of-Way (RoW)
 - Delays & Compensation issues
- Asset Management
 - Increasing Asset Base, Complexity & Ageing Assets
 - Nature's Vagaries, Changing Climate and Wind Pattern
 - High Availability and Reliability

Meeting Challenges in Transmission through Technology

Planning based on projected demand

High Capacity Transmission Corridors

 > 60,000 MW created connecting the major generating pockets to the demand centers.

Renewable Energy Integration with Grid:

- Special green energy corridors created proactively based on assessment of potential Renewable Energy Generation.
- To manage intermittency & variability STATCOM, Fault Ride through technology, Renewable energy management centers (REMC) established.

Integrated Project Management & Control

Transparency & Quality

- E-Procurement, E-Reverse Auction for price efficiency.
- All payments being done digitally.
- Process for inspections being carried out online, saving time and ensuring quality and effective monitoring.
- Enterprise Resource Planning (ERP).

New Technologies – Improving Reliability & Efficiencies

- Land Acquisition & Right-of-Way (RoW)
 - High Voltage lines to save RoW.
 - 400kV → 765kV EHVAC → 1200 UHVAC (Highest Voltage in the World)
 - $\pm 500 \text{kV} \rightarrow \pm 800 \text{kV} \text{HVDC}$
 - Multi circuit/ Pole type towers.
 - Use of Gas Insulated Switchgear for land optimisation.
 - Light HVDC Voltage Source Converter (VSC)
 - Increase in capacity of transmission corridor through - HTLS Conductor, Series Capacitor
 - Making grid smarter for enhanced reliability - STATCOMs, WAMS, REMCs

Voltage	ROW (m)	Capacity (MW)	MW/ m- RoW
400kV (D/c)	46	1000	22
765kV (S/c)	64	2100	33
765kV (D/c)	69	4200	61
±500kV HVDC	52	2500	48
±800kV HVDC	70	6000	90
1200kV UHVAC	100	8000	80

Reduction in Land Requirement

• Cost Saving; Faster Execution through GIS

Enhanced Stability & Reliability

• RE Integration, Grid Balancing

Reduced Carbon Footprint

• Forest Area reduced from 6% in 1998 to 2.26%

Meeting Challenges in Transmission through Technology

National Transmission Asset Management Centre (NTAMC)

- ***** Control Centre for Management of POWERGRID's Transmission Assets.
- ***** Remote Operation of >200 EHV Sub-stations.
- NTAMC is equipped with latest softwares like;
 - AFAS (Automated Fault analysis software); SCADA; Visual Monitoring System (VMS); Remote Access System (RAS) and others for asset management

Meeting Challenges in Transmission through Technology

Patrolling of Lines through Drones, Helicopters and Tablet App based

84 meters away in 2011 22 meters away in 2016

GIS Mapping of transmission assets

Process Bus for Substation Automation

International Benchmarking: Comparison with Peers

Philosophy of benchmarking

International Benchmarking for Transmission Lines

International Benchmarking for Substations

Way Forward: Planning for future

Technology Integration for Infrastructure Management

Asset Health Indexing of Transformers

Use of Hybrid GIS

Substation Inspection Robots

Battery Energy Storage Systems

Superconducting Fault Current Limiter

Gas Insulated Lines

