Regional Roundtable on Infrastructure Governance Regulation, Governance and Transparency

Technology to

 Improve Infrastructure Governance- A Perspective of Indian Power System

Mrs. Seema Gupta, Director(Operations)
May 23, Seoul, Republic of Korea Power Grid Corporation of India Ltd.

Indian Power System - Outlook

Installed Capacity ~ 356 GW		
Annual Consumption - 1250 BU		
Peak Demand Met: 175 GW		
One Nation - One Grid - One Frequency		
2nd Largest Synchronous Grid in World		
Voltage Level	Circuit Kilometers (CKM)	Transformation Capacity(MVA)
HVDC	15556	22500
765 kV	41809	211500
400 kV	180746	324822
220 kV	175296	352481

24x7, Affordable \& Quality Power for All

Seamless Cross-Country power flow
Large Scale Renewables Capacity Addition - 175 GW by 2022

International Cooperation-
Towards integrated power system

Towards Integrated Global Power System

POWERGRID - Growth Story

Planwise Growth

- CKM (cum.)

Planwise Growth

- MVA (cum.)

Challenges in Building Power Transmission Infrastructure

* Generation projects issues:
- Uncertainties in time line, Power Purchase Agreements and Long Term Access
Renewable Energy Integration with Grid:
- RE Generation gestation ~ 1 year while it is 2-3 years for transmission system
- Issues in grid stability due to inherent intermittency, variability and uncertainty.
* Implementing multiple large Projects within Time and Cost
- Approval of Projects
- Transparency in Procurement
- Monitoring of Progress
- Quality Control \& Inspection
* Land Acquisition \& Right-of-Way (RoW)
- Delays \& Compensation issues
* Asset Management
- Increasing Asset Base, Complexity \& Ageing Assets
- Nature's Vagaries, Changing Climate and Wind Pattern
- High Availability and Reliability

Meeting Challenges in Transmission through Technology

Planning based on projected demand

* High Capacity Transmission Corridors
- $>60,000 \mathrm{MW}$ created connecting the major generating pockets to the demand centers.
* Renewable Energy Integration with Grid:
- Special green energy corridors created proactively based on assessment of potential Renewable Energy Generation.
- To manage intermittency \& variability STATCOM, Fault Ride through technology, Renewable energy management centers (REMC) established.
Integrated Project Management \& Control
*Transparency \& Quality
- E-Procurement, E-Reverse Auction for price efficiency.
- All payments being done digitally.
- Process for inspections being carried out online, saving time and ensuring quality and effective monitoring.
- Enterprise Resource Planning (ERP).

New Technologies - Improving Reliability \& Efficiencies

Land Acquisition \& Right-of-Way (RoW)

- High Voltage lines to save RoW.
- $400 \mathrm{kV} \rightarrow 765 \mathrm{kV}$ EHVAC $\rightarrow 1200$ UHVAC (Highest Voltage in the World)
- $\pm 500 \mathrm{kV} \rightarrow \pm 800 \mathrm{kV}$ HVDC
- Multi circuit/ Pole type towers.
- Use of Gas Insulated Switchgear for land optimisation.
- Light HVDC - Voltage Source Converter (VSC)
- Increase in capacity of transmission corridor through - HTLS Conductor, Series Capacitor
$\begin{array}{ll}\text { Making } & \text { grid smarter for } \\ \text { enhanced reliability - STATCOMs, } \\ \text { WAMS, REMCs }\end{array}$

Voltage	ROW (m)	Capacity (MW)	MW/ m- RoW
400 kV (D/c)	46	1000	22
765 kV (S/c)	64	2100	33
765 kV (D/c)	69	4200	61
$\pm 500 \mathrm{kV} \mathrm{HVDC}$	52	2500	48
$\pm 800 \mathrm{kV} \mathrm{HVDC}$	70	6000	90
1200kV UHVAC	100	8000	80

Reduction in Land Requirement

- Cost Saving; Faster Execution through GIS
Enhanced Stability \& Reliability
- RE Integration, Grid Balancing
Reduced Carbon Footprint
- Forest Area reduced from 6\% in 1998 to 2.26%

Meeting Challenges in Transmission through Technology

National Transmission Asset Management Centre (NTAMC)

* Control Centre for Management of POWERGRID's Transmission Assets.
* Remote Operation of >200 EHV Sub-stations.
* NTAMC is equipped with latest softwares like;
- AFAS (Automated Fault analysis software); SCADA; Visual Monitoring System (VMS); Remote Access System (RAS) and others for asset management

Meeting Challenges in Transmission through Technology

Patrolling of Lines through Drones, Helicopters and Tablet App based

GIS Mapping of transmission assets

Process Bus for Substation Automation

International Benchmarking: Comparison with Peers

Philosophy of benchmarking

International Benchmarking for Transmission Lines

Cost Outlier: NG13,TNB13,ELE15,TEP15,TEP: SLOutlier: TRS13,LAN13,ELE15,WEP15,LAN15,TRS

International Benchmarking for Substations

Way Forward: Planning for future

Technology Integration for Infrastructure Management

Asset Health Indexing of Transformers

Battery Energy Storage Systems

Use of Hybrid GIS

Superconducting Fault Current Limiter

Substation Inspection Robots

Gas Insulated Lines

고맙습니다
 gomabseubnida

