

Method 1 – Infrastructure Leakage Index (ILI)						
Data required to calculate Minimum Achievable Leakage:						
DMA Data		Units	Source			
Total length of pipe (Lm)		Km	Measured from GIS maps			
Number of connections (Nc)		Number	Billing database			
Total Service connection length (Lp)		Km	Estimate			
Average DMA pressure		Metre	Logger data			
Minimum Achievable Annual Volume of Physical Losses		m³ / day	Calculation			
On distribution pipes (Lm) =	18 litres/km	mains/day/metre c	f pressure +			
On service connections (Nc) =	0.8 litres/service connection/day/metre of pressure (property boundary) +					
On customer supply pipes (Lp) =	25 litres/km/	day/metre of press	ure (to customer meter)			
			WORLD BANK GROUP			

Method 1 – Infrastructure Leakage Index (ILI)						
xample calculation for Minimum Achievable Leakage of a DMA:						
DMA Data	Value	Units				
Total length of pipe (Lm)	4.81	Km				
Number of connections (Nc)		1,196	Number			
Total Service connection length (Lp)		3.6 (each at 3m)	Km			
Average DMA pressure		11.7	Metre			
Minimum Achievable Annual Volume of Physical Losses		13.20	m ³ / day			
Min Leakage = [(18x 4.81 x11.7) + (0.8 x 1,196 x 11.7) + (25 x 3.6 x 11.7)]/1000						
Min Achievable Leakage for DMA = 13.	20 m³/day					
On distribution pipes (Lm) =	18 litres/km main	s/day/metre of pressure -	÷			
On service connections (Nc) =	0.8 litres/service connection/day/metre of pressure +					
On customer supply pipes (Lp) =	25 litres/km/day/metre of pressure (to customer meter)					
		WORL	D BANK GROUP			

Method 1 – Infrastructure Leakage Index (ILI)							
Evaluating Infra	Evaluating Infrastructure Leakage Index						
	DMA 1	DMA 2	DMA 3	DMA 4	DMA 5	DMA 6	
Actual Leakage	776	180	51	92	400	210	
Minimum Possible Leakage	13.2	14.9	17.1	16.4	11.4	14.6	
ILI	59	12	3	6	35	14	
Category	D	С	Α	В	D	С	
ILI Range	Band	Leakage Reduction					
< 4	А	Further loss	s reduction n	nay be unec	onomical		
4 to < 8	В	Lower prior	ity				
8 to < 16	С	Medium Pri	iority				
≥ 16	D	High Priority					
				WORLD BANK	GROUP		

Т	echnical		Phy	sical Losses	s [Litres/co	onnection/	day]
C	ategory	1111	10 m	20 m	30 m	40 m	50 m
s d	Α	1 - 2		< 50	< 75	< 100	< 125
ope trie	В	2 - 4		50-100	75-150	100-200	125-250
ivel nu	С	4 - 8		100-200	150-300	200-400	250-500
ရွိ ဂျွ	D	> 8		> 200	> 300	> 400	> 500
gr și	Α	1 - 4	< 50	< 100	< 150	< 200	< 250
opii trie	В	4 - 8	50-100	100-200	150-300	200-400	250-500
yel Dun	С	8 - 16	100-200	200-400	300-600	400-800	500-1000
ဦပီ	D	> 16	> 200	> 400	> 600	> 800	> 1000

Commercial Loss	Component
Unbilled Authorised	Unbilled Authorised Consumption:
Consumption	E.g. fire water, sewer cleaning, pipe flushing etc)
	Unauthorised Consumption:
	Billing errors e.g. legitimate connection where billing team not informed, or no action taken (intentional and accidental)
	Permanent or temporary meter bypass
Apparent Losses	Illegal connections
	Revenue Meter Inaccuracies and Data Handling Errors:
	 Volume under-recorded by revenue meter due to its condition Over-sized revenue meters
	Meter tampering (water theft)
	 Meter reader and customer collusion (water theft) 'Fictitious' readings (water theft)
	Data handling errors

Example DMA Data to	Collect and Analyze
NRW Component	Example Data to Collect and Analyse For each DMA
DMA Water Supply Volume	Flow data from DMA meter
Billed water consumption	Billing database
Unbilled Authorised Consumption	Fire hydrants, pipe flushing, fountains etc
Illegal connections	Check GIS property number v actual property in DMA v billing database
Billing and data handling errors	Same as illegal connections Check billing database against actual meter readings
Meter Tampering	Analyse information from meter reading / meter replacement team
Revenue meters errors	Sample each age of meter and test accuracy Check meter is sized correctly Check meter is installed correctly
Leakage	DMA night line and legitimate night time consumption
	WORLD BANK GROUP

Reducing Billing Errors Using the same methodology for reducing illegal connections, identify legal connections not on the billing database Audit the end-to-end processes and make improvements (if any) for: ≻ Meter read to the bill being paid ۶ Estimated readings ۶ Replacing meters **Billing reports** \geq Rotate meter readers to avoid customer collusion Spot billing minimises data Use hand held meter reading devices to avoid handling errors. data errors Hand held printed bill WORLD BANK GROUP PPIAF

<section-header><section-header><image><image><image><image><image><image>

Ме	eter Errors –	Class		
• • •	There are four type A = least accurate A = least expensive It is important to r Vietnam	es of ISO meter classe and D = most accurate and D = most expens neasure low flows wh	es: - A, B, C and D e for measuring low flows sive ere customers have privat	e water tanks - e.g.
	Meter Class	Q nominal	Q min	_
	Class A	1.5 m ³ /hour	60 litres / hour	
	Class B	1.5 m ³ /hour	30 litres / hour	
	Class C	1.5 m ³ /hour	15 litres / hour	
	Class D	1.5 m ³ /hour	11.25 litres / hour	
			Woker	LD DANK GROUP

Meter Errors – Condition Due to Age

We need to:

- Determine the average accuracy of customer meters due to their age
- Identify whether the meter replacement policy is economically justified
- Methodology:
- Remove a sample of working revenue meters for each age group
- · Test the meter accuracy on a calibration testing machine
- Use the results to extrapolate the average meter under-read across each DMA; for example:

Age (years)	No. of Meters April 2010	Proportion	% Under Read	Consumption (m ³)	Under read (m ³)
0 - 5	7,868	33%	2%	212,442	4,248.8
6 - 10	5,957	25%	2%	160,858	3,217.2
11 - 15	5,538	23%	4%	149,545	5,981.8
16 - 20	2,391	10%	16%	64,555	10,328.7
>20	2,149	9%	30%	58,035	17,410.4
Total	23,904	100%	5%	NRW	41,187
	stment				KGROUP

<section-header><section-header><text><image><image><list-item><list-item><list-item><list-item><list-item>

Meter Errors – Incorrect Installation						
 Meters require upstream and downstream straight length pipes to provide uniform velocity profile In general: 						
Meter Type	Upstream Straight Length	Downstream Straight Length				
Electro-Magnetic	3 x pipe diameter	2 x pipe diameter				
Mechanical	10 x pipe diameter	5 x pipe diameter				
 Insufficient straight length distance can result in both over-read and under-read errors (typically 2 to 5% error) An estimate for meter error will be required for the water balance 						
		WORLD BANK GROUP				

M	eter Error Actio	n Plan
#	Potential Meter Issue	Action
1	Meter Size	 Survey sample meters Prioritise under-reading meters for replacement If required, establish procedure for sizing new meters
2	Meter Age	 Establish age of meters Sample different age meters for accuracy Develop a prioritised and economic meter replacement programme
3	Meter Maintenance	 Take sample meters from different areas Establish extent of meter blockages Identify best economic policy – reactive or proactive maintenance
4	Meter installation	 Survey meter installations and evaluate Identify any large industrial meters for re-locating If required, establish standard meter installation designs
5	Meter Mounting	 Survey meter mountings and evaluate If required, establish standard meter installation designs
		WORLD BANK GROUP

Estimating Comm	nercial Loss for the Top-	Down Meth	od
Commercial Loss Component	Data Source and Assumptions	Estimated NRW (m³/day)	Estimated NRW (%)
Unbilled Authorised Consumption	Billing department; fire hydrants metered when flushing	120	1%
Billing Errors	Billing database checked against GIS and walked DMA – no errors	0	0%
Illegal Connections	Average value from GIS / DMA and billing database check	50	0.4%
Meter inaccurate – age	Meter sample calibration test (meters average under read of 5%)	375	3.1%
Meter inaccurate -class	Class B meters under read test	150	1.3%
Meter inaccurate – size	Large revenue meter audit	0	0%
Meter inaccurate - installation	Meter audit - meters installed correctly	0	0%
Meter inaccurate - Tampering	Data taken from meter repair / calibration workshop	225	1.9%
Data Handling Errors	Meter reading audit	80	0.7%
Commercial Loss		1,000	8.3%
		WORLD BANK GROU	P

Calculating Leakage Using the Bottom-Up Method – Example					
Minimum Night Flow into DMA (MNF)	= 13 m³/hour				
Number of domestic connections in DMA	= 500				
Average DMA occupancy rate	= 5				
Legitimate Domestic Night Use factor Note 1	= 1.7 litres / person / hour				
Legitimate Domestic Night Use = 500 x 5 x 1.7 / 1000	= 4.25 m ³ /hour				
Measured Exceptional Night Use	= 1 m ³ /hour				
Night leakage $(L_0) = 13 - 4.25 - 1$	= 7.75 m ³ /hour				
Measured night pressure (P ₀₎)	= 25 metres				
Measured average DMA pressure (P_1)	= 15 metres				
Therefore average DMA leakage (L_1) = 7.75 x (15/25)	= 4.65 m ³ /hour				
Or, average DMA leakage (L ₁)	(= 3,348 m ³ /month)				
Note 1 - IWA Standard Factor Compares well with the Top-Down leakage result of 3,500 m ³ /month					
	WORLD BANK GROUP				

ethod 1 – In	frastruct	ure Le	akage	Index				
Evaluating Infrastru	ucture Leakage	e Index						
	DMA 1	DMA 2	DMA 3	DMA 4	DMA 5	DMA 6		
Actual Leakage	776	180	51	92	400	210		
Minimum Possible Leakage	13.2	14.9	17.1	16.4	11.4	14.6		
ILI	59	12	3	6	35	14		
Category	D	С	Α	В	D	С		
ILI Range	Band		Leakage Reduction					
< 4	А	Further loss reduction may be uneconomical						
4 to < 8	В	Lower prie	Lower priority					
8 to < 16	С	Medium F	Medium Priority					
≥ 16	D	High Prior	High Priority					
	ment	_			WORLD BA	ANK GROUP		

 Simply divid Then reference Example - if 	 Evaluating the Leakage / Connections / Day Simply divide the DMA daily leakage by the number of service connections Then reference the performance category from the average DMA pressure Example - if the average DMA pressure is 10 m: 												
NRW Management	NRW in litres	RW in litres/connection/day when the system is pressurised at an average DMA pressure of:											
Performance Category	r — — — — — — — — — — — — — — — — — — —												
• •	<55	<80	<105	<130	<155								
A1	55-110 80-160 105-210 130-260 155-310												
A1 A2	55-110	80-160	105-210	130-200	110-220 160-320 210-420 260-520 310-620								
A1 A2 B	55-110 110-220	80-160 160-320	210-420	260-520	310-620								
A1 A2 B C	55-110 110-220 220-400	80-160 160-320 320-600	210-420 420-800	260-520 520-1000	310-620 620-1200								

Evaluating th	ie Leakage /	Connect	ions / Day				
		DMA 1	DMA 2	DMA 3	DMA 4	DMA 5	DMA 6
Actual Leakage	ctual Leakage		180	51	92	400	210
# of Connections	uns 1		1,515	1,603	1,652	1,298	1,573
Leakage / connection		648	119	32	56	308	133
Category		D	в	A1	A2	с	в
NRW Management							
NRW Management	NRW in litres/c	onnection/	day when the	system is pre	ssurised at a	n average DM	A pressure of:
NRW Management Performance Category	NRW in litres/c	onnection/	day when the	system is pres 30m	ssurised at a	n average DM m	IA pressure of: 50m
NRW Management Performance Category A1	NRW in litres/c	onnection/	day when the	system is pres 30m <105	ssurised at a 40	n average DM m 30	A pressure of: 50m <155
NRW Management Performance Category A1 A2	NRW in litres/c	onnection/	20m 880 00-160	system is pres 30m <105 105-210	40 Solution	n average DM m 30 -260	A pressure of: 50m <155 155-310
NRW Management Performance Category A1 A2 B	NRW in litres/or 10m <	onnection/	20m 20m 200 <80 0-160 50-320	system is pres 30m <105 105-210 210-420	ssurised at a 40 <1 130- 260-	n average DM m	A pressure of: 50m <155 155-310 310-620
NRW Management Performance Category A1 A2 B B C	NRW in litres/c		20m 20m <80	system is pres 30m <105 105-210 210-420 420-800	ssurised at a 40 <1	n average DM m	A pressure of: 50m <155 155-310 310-620 620-1200

Leakage Target Setting Using ILI									
		DM	A 1	DMA 2	DMA 3	DMA 4	DMA 5	DMA 6	
Actual Leakage		77	76	180	51	92	400	210	
Leak Reduction Volume		70	00	90	0		330	120	
Target leakage (m³/day)		76		90	51	92	70	90	
Minimum Possible Leakage		13.2		14.9	17.1	16.4	11.4	14.6	
ILI		6		6	3	6	6	6	
Category		E	3	В	А	В	В	В	
ILI Range	Band				Leakag	e Reductior	1		
< 4	А		Furth	Further loss reduction may be uneconomical					
4 to < 8	В		Lowe	Lower priority					
8 to < 16	С		Medi	Medium Priority					
≥ 16	D		High	Priority					
							D BANK GROU	P	

Leakage Target Setting Using L/C/D of Pressure									
		DMA 1	DMA 2	DMA 3	DMA 4	DMA 5	DMA 6		
Actual leakage		776	180	51	92	400	210		
Number of connections		1,196	1,515	1,603	1,652	1,298	1,573		
Target leakage (m³/day)		700	90	0	0	334	117		
Leakage after project		76	90	51	92	66	93		
Leakage / connection		63	59	32	56	51	59		
Category		A2	A2	A1	A2	A2	A2		
NRW Management	NRW in litr	es/conne	ction/day average	when the DMA press	system is sure of:	pressuri	sed at an		
Performance Category 10m		20	m	30m	40m		50m		
A1	<55	<8	0	<105	<130)	<155		
A2	55-110	80-1	160	105-210	130-2	60	155-310		
B	110-220	160-	320	210-420	260-5	20	310-620		
C	220-400	320-	600	420-800	520-10	000	620-1200		
D	AP 400	>6	>600 >800						