Risk Matrix for Airports Full Description ## Sample risk matrix – Airports | | | Risk | Description | Public | Private | Shared | Mitigation | |-----|-----------------------------|---|---|--------|---------|--------|--| | | Operating
Risk | Inadequate performance | The risk of service quality provided by the concessionaire not meeting contracted service standards or availability | | Х | | Ensuring the appointment of a competent operator who could remediate any inadequacies in performance. | | | | O&M costs
overrun | Risk of O&M costs being higher than forecast or budgeted. | | X | | Appointment of competent opera
and management putting into pla
timely remedial steps. | | | | Life cycle costs
overrun | Risk of lifecycle costs
being higher than forecast
or budgeted | | X | | Appointment of competent opera
and management putting into pla
timely remedial steps to manage
increased costs; passing of increa
costs to end-users within the
parameters of fee and charges
setting regime | | | | Utilities costs
overrun | Risks of utility costs being
higher than estimated or
budgeted due to
inefficiencies or increased
charges | | X | | Appointment of competent opera proactive asset management to ensure that assets are maintained manner that optimises costs. | | | | Latent Defects
and Existing
Liabilities | Risks of latent defects and existing liabilities in the airport assets | | | X | Conduct adequate technical due diligence; the Private Sector to be the risk up to a certain threshold beyond which the risk will be bo by the Public sector. | | Rev | Demand/
Revenue
Risks | Demand and traffic risk | Actual traffic at the airport is lower than forecast causing a shortfall in actual aeronautical revenue against budgeted revenue | | Х | | Ensure that traffic survey and forecast are conducted by compe advisers; defer timing of capacity driven capital expenditure prograre-deployment of staff and recalibration of level and intensity operational functions, | | | | Non-
aeronautical
revenue risk | The concessionaire fails to attract tenants or patronage at retail concessions is lower than budgeted causing a shortfall in actual vs. budget non-aeronautical revenue | | X | | Comprehensive feasibility study
be conducted, including detailed
review of Government objectives
and plan; due planning and
marketing initiatives. | | Failure to collect airport charges | Due to failure
or non-
optimality of
collection
system from
passengers and
airlines | | X | | Proven collection system and good operation performa | nal | |------------------------------------|---|--|---|---|---|--| | Charges
setting risk | Risk that fees and charges indexation does not match inflation or cost increases and escalations, thereby impacting margins or that the Relevant Authority does not approve escalation as per agreed fee and charges escalation mechanism | | | X | Clear regulation or contract terms that regulate the rate and adjustment of fees. | | | Financial | achieve
financial close | Inability to achieve financial close due to market uncertainty or the project capital structure is not optimal | | X | | Good coordination with potential and credible lenders. | | | | Fluctuation of foreign exchange rate | | X | | Financing in local currency to the extent possible; taking into according currency fluctuation hedging instruments; such as future contraind currency options. | | | interest rate
risk | Increase of inflation rate used for estimating life-cycle costs and interest rate | | X | | Fee and charges indexation facto interest rate hedging. | | Change in law/regulation | in law | Change in law such as taxation which impacts all businesses and industries | | X | | General change in law risk shoul borne by the concessionaire. | | | or project | Change in project-specific law or regulation such as fee and charges setting | X | | | Mediation, negotiation; political insurance; | | Force
Majeure | Natural
disasters | The occurrence of natural disasters disrupting operations | | X | Insurance, to extent possible. Climate mitigation and adaptatio plan. Emergency Preparedness and Response plan (EPR plan) / Disa Risk Management plan (DRM plan). Incorporate Qualified Climate Ri Events. | |------------------|----------------------------|--|--|---|---| | | Political force
majeure | Events of war, riots, civil disturbance | | X | Insurance, to extent possible;
termination with compensation if
settlement cannot be reached. | | | Prolonged force
majeure | If above prolongs for 6 to 12 months, may cause economic problems to the affected party (esp. if insurance does not exist) | | x | Either party should be able to terminate the contract and trigger early termination. | | E&S Risks | E&S risks | Airport development and | X | The pa | |-----------|------------|--|---|-----------------| | and | management | operation create many E&S | | and O | | Climate | | impacts and risks, which if | | (O&N | | Risks | | not appropriately managed, | | E&S S | | | | can result in impact on the social and natural | | plans timpac | | | | environment. | | with a | | | | Changes to noise emission | | Reduc | | | | pattern and increased | | using | | | | complaints. | | reduci | | | | Changes in ecosystems and | | enviro | | | | associated risks. | | suppor | | | | Reduced air quality. | | Sustai | | | | Changes in ecosystems and | | cycle | | | | distributions of wildlife and | | suppor | | | | wildlife attractants. | | taxiing | | | | | | Target | | | | | | on noi | | | | | | on flig | | | | | | time. | | | | | | Design | | | | | | contro
along | | | | | | such a | | | | | | Solid | | | | | | | | | | | | Integra | | | | | | (IVM) | | | | | | Wildli | | | | | | (WHN | | | | | | acoust | | | | | | Facilit | | | | | | adapta | | | | | | Use of | | | | | | materi | | | | | | runwa | | | | | | aggreg | | | | | | constr | | | | | | Achie | | | | | | sustair | | | | | | (e.g. R | | | | | | bevera | | | | | | Comp | | | | | | minim | | | | | | types | | | | | | | The party in charge for construct and Operation and Maintenance (O&M) should have undertaken E&S Studies prepared management plans to mitigate any adverse impacts and risks and consistent with applicable laws. Reducing the use of electricity by using renewable energy and reducing fuel consumption by us environmentally friendly ground support equipment and transportation. Sustainable landing and take-off cycle of aircraft(s) and ground support operations, single engine taxiing. Targeted charges to airlines base on noise measurement. Restriction on flight operations during night time. Design and implementation of no control measures (e.g. noise barr along the boundaries of the airposuch as earthen mounds, walls). Solid waste management plan. Integrated vegetation manageme (IVM). Wildlife hazard management pla (WHMP), including e.g. bio-acoustic technology. Facilitate ecosystem-based adaptation. Use of supplementary cementitic materials (SCM) in concrete runways and use of recycled aggregates in taxiway and apron construction. Achieve the environmental sustainability of passenger termin (e.g. Recyclable food packaging, beverage containers and utensils. Composting and/or food procurement practices aimed at minimizing waste. LED and other types of energy-efficient lighting | Risk of | X | The | | |---------------|---|--------------|-----| | noncompliand | | parties | | | on the E&S | | to | | | aspect of the | | review | | | concession | | complian | nce | | agreement. | | of the | | | | | E&S | | | | | aspect | | | | | of the | | | | | Concession | | | | | Agreement, | | | | | during | | | | | construction | | | | | and | | | | | O&M. | | Climate Deterioration of risks * runway surface integrity through softening and aircraft rutting. Flood risks to airports due to increased precipitation and/or sea level rise. Lift of aircraft reduced due to higher temperatures. Temperature change affect navigational signals and satellite coverage. Electrical power supply failed during strong winds and storms. Increasing wildlife-strike risks due to changes in the local ecosystem. Use of airport as shelter or as hub for relief operations. Enhanced runway design criteria (e.g. increase height above sealevel of runaway to withstand a 1-in-100 year storm surge event). Integrate climate resilience in maintenance regimes and runaway surface specifications. Improve emergency repair procedures. Upgrade drainage systems. Installed permeable pavement to drain storm water. Installation and closure of flood/tidal gates and floodstorage * Based on "WB (2016) - Emerging Trends in Mainstreaming Climate Resilience in Large Scale, Multisector Infrastructure PPPs and based on "ACI Resolution 3/2018 on resilience and adaptation to climate change" and based on "Sydney Airport 2021 Response to the Task Force on Climate-related Financial Disclosures" ## Key variables to monitor on climate risks and its impacts, for airport assets: - Runway Pavement cracking / potholes (runway area affected) - Wildfires Events in 100km surrounding area (# of events) - Maximum temperature and deviation vs. average monthly max temperature (in °C) - Sea level rise (in meters) - Flooding (airport area affected) - Intense precipitation events (in milimetres) - Wind speed (in km/hour) ## Related Content Guidelines for Implementing Asset Recycling Transactions (Download PDF version) - Now Available! **Additional Resources** Public-Private Partnerships in Airports Checklists and Risk Matrices Allocating Risks in PPP Contracts Page Specific Disclaimer The Guidelines have not been prepared with any specific transaction in mind and are meant to serve only as general guidance. It is therefore critical that the Guidelines be reviewed and adapted for specific transactions To find more, visit the Guidelines to Implementing Asset Recycling Transactions Section Overview and Content Outline, or Download the Full Report.